Protein delivery using engineered virus-like particles.

نویسندگان

  • Stanislaw J Kaczmarczyk
  • Kalavathy Sitaraman
  • Howard A Young
  • Stephen H Hughes
  • Deb K Chatterjee
چکیده

Over the years, researchers have developed several methods to deliver macromolecules into the cytosol and nucleus of living cells. However, there are limitations to all of these methods. The problems include (i) inefficient uptake, (ii) endosomal entrapment, (iii) delivery that is restricted to certain cell types, and (iv) damage to cells in the delivery process. Retroviral vectors are often used for gene delivery; however, integration of the genome of retroviral vector into the host genome can have serious consequences. Here we describe a safe alternative in which virus-like particles (VLPs), derived from an avian retrovirus, are used to deliver protein to cells. We show that these VLPs are a highly adaptable platform that can be used to deliver proteins either as part of Gag fusion proteins (intracellular delivery) or on the surface of VLPs. We generated VLPs that contain Gag-Cre recombinase, Gag-Fcy::Fur, and Gag-human caspase-8 as a proof-of-concept and demonstrated that the encapsidated proteins are active in recipient cells. In addition, we show that murine IFN-γ and human TNF-related apoptosis-inducing ligand can be displayed on the surface of VLPs, and that these modified VLPs can cause the appropriate response in cells, as evidenced by phosphorylation of STAT1 and induction of cell death, respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intracellular delivery of antibodies by chimeric Sesbania mosaic virus (SeMV) virus like particles.

The therapeutic potential of antibodies has not been fully exploited as they fail to cross cell membrane. In this article, we have tested the possibility of using plant virus based nanoparticles for intracellular delivery of antibodies. For this purpose, Sesbania mosaic virus coat protein (CP) was genetically engineered with the B domain of Staphylococcus aureus protein A (SpA) at the βH-βI loo...

متن کامل

HIV-1 Gag p17 presented as virus-like particles on the E2 scaffold from Geobacillus stearothermophilus induces sustained humoral and cellular immune responses in the absence of IFNγ production by CD4+ T cells.

We have constructed stable virus-like particles displaying the HIV-1 Gag(p17) protein as an N-terminal fusion with an engineered protein domain from the Geobacillus stearothermophilus pyruvate dehydrogenase subunit E2. Mice immunized with the Gag(p17)-E2 60-mer scaffold particles mounted a strong and sustained antibody response. Antibodies directed to Gag(p17) were boosted significantly with ad...

متن کامل

Formation mechanism of chalcogenide nanocrystals confined inside genetically engineered virus-like particles

Engineered virus-like particles (VLP) are attractive for fabricating nanostructured materials for applications in diverse areas such as catalysis, drug delivery, biomedicine, composites, etc. Basic understanding of the interaction between the inorganic guest and biomolecular host is thus important for the controlled synthesis of inorganic nanoparticles inside VLP and rational assembly of ordere...

متن کامل

Truncated Hepatitis B virus like nanoparticles: A novel drug delivery platform for cancer therapy

Nowadays, Nano-sized drug delivery systems have been studied extensively for theirpotential in cancer therapy. Various drug nanocarriers are being developed including liposomes, micelles, and Virus like nanoparticles (VLNPs). VLNPs offer many advantages for developing smart drug delivery systems due to their precise and repeated structures and relatively large cargo capacities. Truncated ...

متن کامل

Conjugation of an antibody Fv fragment to a virus coat protein: cell-specific targeting of recombinant polyoma-virus-like particles.

The development of cell-type-specific delivery systems is highly desirable for gene-therapeutic applications. Current virus-based vector systems show broad cell specificity, which results in the need to restrict the natural tropism of these viral systems. Here we demonstrate that tumour-cell-specific virus-like particles can be functionally assembled in vitro from recombinant viral coat protein...

متن کامل

Genetically engineered nanocarriers for drug delivery

Cytotoxicity, low water solubility, rapid clearance from circulation, and off-target side-effects are common drawbacks of conventional small-molecule drugs. To overcome these shortcomings, many multifunctional nanocarriers have been proposed to enhance drug delivery. In concept, multifunctional nanoparticles might carry multiple agents, control release rate, biodegrade, and utilize target-media...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 41  شماره 

صفحات  -

تاریخ انتشار 2011